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1Strongly Correlated Systems “Lendület” Research Group,
Institute for Solid State Physics and Optics, MTA Wigner Research Centre for Physics,

H-1121 Budapest, Konkoly-Thege Miklós út 29-33, Hungary
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I. MULTIPARTITE CORRELATIONS

Here we recall the two-level theory of multipartite cor-
relations, introduced earlier for the investigation of multi-
partite entanglement1. Furthermore, we extend the con-
struction with the formalism of restriction to subsystems
and coarsening, and we also construct bounds and rela-
tions for the resulting correlation measures. Using these
tools we formulate and solve the task of multipartite cor-
relation clustering, that is, dividing the whole system
into weakly correlated subsystems consisting of strongly
correlated elementary subsystems.

A. Setting the stage.

Consider a quantum system composed of n elemen-
tary subsystems, labelled by natural numbers L =
{1, 2, . . . , n}. For the quantum mechanical description of
every elementary subsystem, a Hilbert space of uniform
dimension d is used. These can form the whole system
investigated, or only a subsystem of that. Note that, in
the Supplementary, we give a general treatment.2–5 In
the case in which we use these tools in the main text,
the elementary subsystems are the orbitals (or clusters
of orbitals in coarsened cases), that is, we use the second
quantized formalism there, contrary to the first quan-
tized formalism, in which case the elementary subsystems
are the electrons. (A dictionary is given in Table S1.)
Note that, however, this general treatment works equally
well in the first and the second quantized pictures, this
is why we have chosen this way of presentation here.
In the first quantized picture, the construction charac-
terises the correlations of the, e.g., position (or spin or
other degrees of freedom) of different distinguishable par-
ticles, and in the second quantized picture, the same con-
struction characterises the correlations of the occupation
of states with different, e.g., position (or spin or other
degrees of freedom). We also note that in the case of
fermionic particles, the occupations of the sites are given
in terms of anticommuting operators. This leads to some
difficulties when one uses tools working well in the dis-
tinguishable case. However, it has turned out that all
what we need during the construction of our multipar-
tite/multiorbital correlation clustering are working well if

the situation is restricted to the physical subspace of the
operator algebra,6–8 consisting of parity-preserving op-
erators. Since in the molecular-physical situations, con-
sidered in the main text, even the preservation of the
particle number holds, the following construction can ob-
viously be applied.

The state of the quantum system is represented by a
normalised positive linear functional acting on the alge-
bra of the observables. It is given by the density operator
%L, which is a positive semidefinite operator of trace one,
acting on the Hilbert space associated to the system.2,4,5

By restricting the state to the subalgebra of a (not nec-
essarily elementary) subsystem X ⊆ L, one can form the
reduced density operator %X of the subsystem. An es-
sential property of a quantum state is its mixedness. It
can be characterised by the von Neumann entropy2,5,9

S(%) = − tr % ln %. (1)

One can also compare two quantum states in the sense
of statistical distinguishability10 by the Umegaki relative
entropy2,11,12 (or quantum Kullback-Leibler divergence)

D(%||ω) = tr %(ln %− lnω). (2)

These two functions are of central importance in quan-
tum information theory,3–5 and the whole construction
we build here is based on them. Both of these functions
are nonnegative,2,11 and they have several beautiful prop-
erties, making them extremely useful, also in the cases in
which we apply them in the sequel. Maybe the most
important one is the strong subadditivity of the von Neu-
mann entropy2,6,13

S(%X∪X′) + S(%X∩X′) ≤ S(%X) + S(%X′). (3a)

A special case for disjoint subsystems X and X ′ is the
subadditivity of the von Neumann entropy,

S(%X∪X′) ≤ S(%X) + S(%X′). (3b)

From the strong subadditivity, the so called Araki-Lieb
triangle inequality of the von Neumann entropy2,4,5,7,14

also follows ∣∣S(%X)− S(%X′)
∣∣ ≤ S(%X∪X′). (3c)

Maybe even more fundamental is the monotonicity of the
relative entropy with respect to state reduction,2,6,15–17

that is, for subsystems Y ⊆ X,

D(%X ||ωX) ≥ D(%Y ||ωY ). (4)
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quantum information
theory

quantum mechanics
(distinguishable particles)
(first quantized)

many-body quantum physics
(second quantized)

quantum chemistry
(Born-Oppenheimer appr.)
(second quantized)

system ensemble of particles chain, lattice electronic system of molecule

elementary subsystem particle site orbital

composite subsystem subensemble of particles block/cluster (of sites) cluster (of orbitals)

Supplementary Table S1. Dictionary. In the main text we follow mainly the quantum chemistry language, because of the
illustrative chemical applications, while in this Supplementary we use the general quantum information theory language. Note
that the elementary subsystems are always distinguishable in this treatment. We do not treat the correlations in the first
quantized formalism of indistinguishable particles.

B. Level I correlations.

A split of the system into parts is given by the partition
ξ = {X1, X2, . . . , X|ξ|} ≡ X1|X2| . . . |X|ξ| of the labels
L, that is, the X ∈ ξ sets of labels are nonempty and
disjoint, and their union is the whole L. The set of the
partitions of L is denoted with Π(L). The partitions
are illustrated with small pictographs in Fig. S1 for n =
2, 3, 4 subsystems. For two partitions, υ is a refinement18

of ξ, (“υ is finer than ξ”, or, “ξ is coarser than υ”)
denoted with υ � ξ, if ξ can be obtained from υ by
joining some (maybe none) of the parts of υ. That is,

υ � ξ def.⇐⇒ ∀Y ∈ υ,∃X ∈ ξ : Y ⊆ X. (5)

The refinement relation is a partial order, and the set
of partitions Π(L) turns out to be a lattice18. The top
and bottom elements are > = {{1, 2, . . . , n}} = {L} and
⊥ = {{1}, {2}, . . . , {n}} ≡ 1|2| . . . |n, respectively. Later
we will also need the notion of being neighbours in the
lattice. This is called covering relation.18 For two parti-
tions, ξ covers υ, denoted with υ ·≺ ξ, if |υ| = |ξ| + 1,
while υ ≺ ξ, from which we can conclude that there ex-
ists exactly one part X∗ ∈ ξ, for which there are exactly
two parts Y∗1, Y∗2 ∈ υ, such that X∗ = Y∗1 ∪ Y∗2; and all
the other parts in ξ can also be found in υ. That is,

υ ·≺ ξ ⇐⇒
{
υ \ ξ = {Y∗1, Y∗2} ∈ Π(X∗), and

ξ \ υ = {X∗} ∈ Π(X∗).
(6)

The covering relation is illustrated with arrows in Fig. S1
for n = 2, 3, 4 subsystems.

A quantum state %L is ξ-uncorrelated, that is, uncorre-
lated with respect to the partition ξ, if it can be written
in a product form of the reduced states with respect to
ξ. One can characterise to what extent a state is not
ξ-uncorrelated. To this end, let the ξ-correlation1, also
called “among-the-clusters correlation information”19 be
defined as

Cξ(%L) :=
∑
X∈ξ

S(%X)− S(%L), (7)

with the reduced states %X . (For the finest ⊥ split, this
is also called “correlation information”19, or “multipar-
tite mutual information”20, or “total correlation”21,22,

also considered by Lindblad23 and used24 to describe
correlations within multipartite quantum systems.) For
a bipartition ξ = X1|X2 ≡ X1|(L \ X1), the quantity
CX1|X2

(%L) = S(%X1
) + S(%X2

) − S(%L) = IX1|X2
(%L)

is the well-known (bipartite) mutual information.2–5 The
information-geometrical meaning of the ξ-correlation is
also clarified1,25, it expresses the minimal distinguisha-
bility (2) of a state from the set of ξ-uncorrelated states,
the “relative entropy of ξ-correlation”,

min
ωL ξ-uncorr.

D
(
%L
∥∥ωL) = Cξ(%L). (8)

Note that because of the (3b) subadditivity of the von
Neumann entropy, the ξ-correlation takes higher value
for a finer split,

υ � ξ ⇐⇒ Cυ ≥ Cξ. (9)

This is called multipartite monotonicity (of the first
kind).1

Some remarks on the relation to entanglement26–28

is also on place here. If the whole system can be de-
scribed by a pure state %L = |ψL〉〈ψL|, the (7) correla-
tion with respect to the X|(L \X) split is just two times
the entanglement entropy3,4,29 of subsystem X ⊆ L,
that is, CX|(L\X)(%L) = 2S(%X), because of the Schmidt

decomposition3,4,30. Generally speaking, pure states of
classical systems are always uncorrelated. If a pure state
of a quantum system is correlated, then this correlation
is of quantum origin, and it is called entanglement. Then
correlation measures for pure quantum states often lead
to entanglement measures1. Mixed states of a classi-
cal system can be either correlated or uncorrelated. If
a mixed state of a quantum system is correlated, this
correlation can either be classical or it can contain also
quantum entanglement25,31. For mixed states, entangle-
ment measures can also be constructed1,32.

C. Level II correlations.

We also need to consider a second level notion of un-
correlated states. This expresses that a state is uncor-
related with respect to at least one partition from a
given set. If ξ-uncorrelated states are considered, then υ-
uncorrelated states are automatically considered also for
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Supplementary Figure S1. Lattices of partitions for n = 2, 3, 4 subsystems. The covering is depicted with arrows from the finer
to the coarser partition. The nonempty down-sets corresponding to the notions of k-partitionably uncorrelated and k-producibly
uncorrelated are located under the dashed lines starting from the left and the right, respectively.

all υ � ξ, so it is natural to consider the nonempty down-
sets of partitions1 (also called order ideal). A nonempty
ξ = {ξ1, ξ2, . . . , ξ|ξ|} ⊆ Π(L) set is a nonempty down-
set if it contains every partition which is finer than its
maximal elements.18 This can be drawn by lines cutting
the partition lattice into two parts in a way that the ar-
rows cross these lines in one way only. The elements of
the down-set are then the ones located under that line.
Some of these cuttings are illustrated with dashed lines
in Fig. S1 for n = 2, 3, 4 subsystems. Here we also have a
natural partial order, being the standard set-theoretical
inclusion among the nonempty down-sets, υ � ξ if and
only if υ ⊆ ξ, and the set of nonempty down-sets of par-
titions is also a lattice18. Particular down-sets are the
principal ideals ↓{ξ} = {ξ′ ∈ Π(L) | ξ′ � ξ}, being the
down-sets of partitions finer than or equal to a single ξ.
Easy to check that ↓{ξ} � ↓{ξ′} ⇔ ξ � ξ′, so the Level
I structure is enbedded into Level II in this way. (A
dual way of this embedding is using the principal filters
↑{ξ} = {ξ′ ∈ Π(L) | ξ � ξ′}, which is a particular kind
of up-set or order filter.)

A quantum state %L is ξ-uncorrelated, if it is ξ-
uncorrelated with respect to at least one ξ ∈ ξ. One can
characterise to what extent a state is not ξ-uncorrelated.
To this end, let the ξ-correlation1 be defined as

Cξ(%L) := min
ξ∈ξ

Cξ(%L). (10)

The information-geometrical meaning of the ξ-
correlation is also clarified1, it expresses the mini-
mal distinguishability (2) of a state from the set of
ξ-uncorrelated states,

min
ωL ξ-uncorr.

D
(
%L
∥∥ωL) = min

∀ξ∈ξ
min

ωL ξ-uncorr.
D
(
%L
∥∥ωL)

= min
∀ξ∈ξ

Cξ(%L) = Cξ(%L),

(11)

see (8). Note that because of the multipartite monotonic-
ity (9) of the ξ-correlation (7), it is sufficient to calculate
the minimum over the maximal elements of ξ in the ξ-
correlation (10), that is, Cξ(%L) = minξ∈max ξ Cξ(%L).
In particular, C↓{ξ} = Cξ for the principal ideal ↓{ξ}.
Note on the other hand that, because of the multipartite
monotonicity (9) of the ξ-correlation, the ξ-correlation
takes higher value for a smaller nonempty down-set,

υ � ξ ⇐⇒ Cυ ≥ Cξ. (12)

This is called multipartite monotonicity (of the second
kind)1.

D. k-partitionability and k-producibility.

So far we introduced different kinds of uncorrelated
states, and we characterised to what extent a state is
not uncorrelated in the different ways. This construction
actually led to different notions of correlations. For our
goals it is enough to consider some special ones of them.

For k = 1, 2, . . . , n, a state is k-partitionably uncorre-
lated, if it can be written in the product form of density
matrices of (at least) k subsystems. That is, they are
µk-uncorrelated for the nonempty down-set µk contain-
ing all the partitions µ in which the number (|µ|) of the
parts is greater than or equal to k,1

µk =
{
µ ∈ Π(L)

∣∣ |µ| ≥ k}. (13a)

(This is related to the natural gradation of the lattice of
partitions Π(L).) These form a chain (a completely or-
dered set), {⊥} = µn � . . . � µk+1 � µk � . . . � µ1 =
Π(L). (k-partitionability is related to the k-separability
in the theory of multipartite entanglement33–35: a mixed
state is said to be k-separable, if it can be written as the
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convex mixture of k-partitionably uncorrelated states.
We would call them k-partitionably separable in an ex-
tended nomenclature, describing correlation and entan-
glement.) The cuttings corresponding to the nonempty
down-sets µk are illustrated with dashed green lines in
Fig. S1 for n = 2, 3, 4 subsystems.

For k = 1, 2, . . . , n, a state is k-producibly uncorrelated,
if it can be written in the product form of density ma-
trices of subsystems of size at most k. That is, they are
νk-uncorrelated for the nonempty down-set νk contain-
ing all the partitions ν in which the sizes (|N |) of the
parts N ∈ ν are less than or equal to k,1

νk′ =
{
ν ∈ Π(L)

∣∣ ∀N ∈ ν : |N | ≤ k′
}
. (13b)

(This is related to a “dual view” of the lattice of par-
titions Π(L).) These form a chain, {⊥} = ν1 � . . . �
νk−1 � νk � . . . � νn = Π(L). (k-producibility
was originally introduced for the studying of multipartite
entanglement34,36,37, here we use an analogue of that for
correlation: a mixed state is said to be k-producible, if
it can be written as the convex mixture of k-producibly
uncorrelated states. We would call them k-producibly
separable in an extended nomenclature, describing cor-
relation and entanglement.) The cuttings corresponding
to the nonempty down-sets νk are illustrated with dashed
orange lines in Fig. S1 for n = 2, 3, 4 subsystems.

One can characterise to what extent a state is not k-
partitionably and k-producibly uncorrelated by the use of
the µk- and νk-correlation (10). In this case we call that
k-partitionability correlation and k-producibility correla-
tion, respectively,

Ck-part(%L) := Cµk
(%L) ≡ min

µ∈µk

Cµ(%L), (14a)

Ck-prod(%L) := Cνk
(%L) ≡ min

ν∈νk

Cν(%L). (14b)

That is, for an n-partite system, we have two groups of
n functions measuring correlation. Because of the mul-
tipartite monotonicity (12), the k-partitionability cor-
relation takes lower value for a smaller k, and the k-
producibility correlation takes higher value for a smaller
k,

k ≤ k′ ⇐⇒ Ck-part ≤ Ck’-part, (15a)

k ≤ k′ ⇐⇒ Ck-prod ≥ Ck’-prod. (15b)

Note that µ1 = νn = Π(L), so C1-part = Cn-prod = 0;
µ2 = νn−1, so C2-part = C(n− 1)-prod; µn = ν1 = {⊥},
so Cn-part = C1-prod = C{⊥} = C⊥. There are no such
coincidences for other values of k in general, however,
µk � νn−k+1 (because, for any partition ξ ∈ Π(L), the
relation |X| ≤ n− (|ξ| − 1) holds for all X ∈ ξ parts), so

Ck-part ≥ C(n− k + 1)-prod, (16)

because of the multipartite monotonicity (12).

E. Correlations in subsystems and coarsening.

Until this point, we considered the correlation mea-
sures (7), (10) and (14) in a system L = {1, 2, . . . , n}
of elementary subsystems by the use of the partitions
ξ = {X1, X2, . . . , X|ξ|} ≡ X1|X2| . . . |X|ξ| ∈ Π(L). There
are two ways for making these concepts more flexible.

First, we would like to characterise the correlations
in a (nonempty) subsystem L′ ⊆ L. Then for Level
I, obviously, we have the ξ′-correlation for ξ′ ∈ Π(L′)
with the same definition (7). For Level II, we also have
the ξ′-correlation for a nonempty down-set ξ′ ⊆ Π(L′)
with the same definition (10). For the k-partitionability
and k-producibility correlations, we have to denote
the restriction for subsystem, and we use the notation
Ck-part,L′(%L′) and Ck-prod,L′(%L′), respectively.

One can also restrict the notions for (nonempty) sub-
systems L′ ⊆ L from the original system L. Let us denote
the restriction of a partition ξ ∈ Π(L) to subsystem L′

with ξ|L′ = {X ∩ L′ 6= ∅ | X ∈ ξ} ∈ Π(L′). It is easy to
check that if υ � ξ then υ|L′ � ξ|L′ . Let us denote the
restriction of a nonempty down-set of partitions ξ to sub-
system L′ with ξ|L′ = {ξ|L′ | ξ ∈ ξ}. It is easy to check
that if υ � ξ then υ|L′ � ξ|L′ . The k-partitionability
and k-producibility of the whole system L is described
by the µk and νk down-sets of partitions in Π(L) (see
above). Then, the k-partitionability and k-producibility
of the subsystem L′ is described by the µk,L′ and νk,L′
down-sets of partitions in Π(L′). We have then that

µk|L′ = µk−(|L|−|L′|),L′ , (17a)

νk|L′ = νk,L′ . (17b)

(So, restricting the k-partitionability of the system makes
sense only if k is larger than the number of dropped sub-
systems plus one; and restricting the k-producibility of
the system makes sense only if k is smaller than the num-
ber of the kept subsystems.) The proofs of these are as
follows. Notice that 0 ≤ |ξ|− |ξ|L′ | ≤ |L\L′| = |L|− |L′|,
because the number of parts always decreases for restric-
tion, and the largest decrease occurs when all the parts
X ∈ ξ which are not contained in L′ are of size 1, then the
number of empty sets, coming from X ∩ L′, is |L \ L′|.
Rearranging the relations, we have the bounds on the
size of the restricted partition |ξ| − |L \L′| ≤ |ξ|L′ | ≤ |ξ|.
For the proof of (17a), we need, on the one hand, that
∀µ ∈ µk, µ|L′ ∈ µk−|L\L′|,L′ . This comes from that

k − |L \ L′| ≤ |µ| − |L \ L′| ≤ |µ|L′ |, where the first
inequality is |µ| ≥ k (by (13a) definition of µk) and
the second one is the above bound on the size of the
restricted partition. For the proof of (17a), we need,
on the other hand, that ∀µ′ ∈ µk−|L\L′|,L′ , ∃µ ∈ µk
such that µ′ = µ|L′ . For this, we consider the parti-
tion µ = µ′ ∪ µ′′ ∈ Π(L), where µ′′ ∈ Π(L \ L′). Then
µ|L′ = µ′ holds clearly. Let µ′′ be the bottom element of
Π(L \ L′), that is, µ′′ := ⊥Π(L\L′) = {{i} | i ∈ L \ L′},
then |µ| = |µ′| + |⊥Π(L\L′)| = |µ′| + |L \ L′| ≥ k, so
µ ∈ µk. For the proof of (17b), we need, on the one
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hand, ∀ν ∈ νk, ν|L′ ∈ νk,L′ . This comes from the (13b)
definition of νk, and from that the size of the parts of
ν decreases for restriction. For the proof of (17b), we
need, on the other hand, that ∀ν′ ∈ νk,L′ , ∃ν ∈ νk
such that ν′ = ν|L′ . For this, we consider the parti-
tion ν = ν′ ∪ ν′′ ∈ Π(L), where ν′′ ∈ Π(L \ L′). Then
ν|L′ = ν′ holds clearly. Let ν′′ be also k-producible, that
is, ν′′ ∈ νk,L\L′ then clearly ν ∈ νk, by (13b) definition
of νk.

Second, we would like to characterise the correlations
in the whole system L, but only with respect to a coars-
ening, given by the partition υ = Y1|Y2| . . . |Y|υ| ∈ Π(L).
That is, the composite subsystems Y ∈ υ become the
elementary ones in the coarsened treatment. This means
that, for the correlations, we use the partitions coarser
than υ, the set of which is denoted by Π(L, υ) = {ξ′ ∈
Π(L) | υ � ξ′} = ↑{υ} ⊆ Π(L), which is a princi-
pal filter18 in Π(L). Then for Level I, we have the ξ′-
correlation for ξ′ ∈ Π(L, υ) with the same definition
(7). For Level II, we also have the ξ′-correlation for a
nonempty down-set ξ′ ⊆ Π(L, υ) with the same defini-
tion (10). For the k-partitionability and k-producibility
correlations, we have to denote the coarsening and we
use the notation Ck-part,υ(%L) and Ck-prod,υ(%L), respec-
tively. (Note that in the case of k-producibility, the min-
imisation in (14b) should be taken over the partitions
ν ∈ νk,υ = νk ∩ Π(L, υ) ⊆ Π(L, υ) in which the parts
N ∈ ν are the disjoint union of subsystems Y ∈ υ of
number less than or equal to k.)

F. Global bounds.

The von Neumann entropy (1) takes its maximum for
maximally mixed states,2 so it is bounded by

S(%X) ≤ ln dX = |X| ln d, (18)

where d is the (uniform) dimension of the Hilbert spaces
of the elementary subsystems.

For disjoint X,X ′ ∈ L subsystems, we have that the
usual bipartite X|X ′-correlation (7) is bounded by

CX|X′(%X∪X′) ≤
(
|X|+ |X ′|

)
ln d. (19)

Another bound can also be given, which is stronger, if
one part is larger than the other,

CX|X′(%X∪X′) ≤ min
{

2 ln dX , 2 ln dX′
}

= min
{
|X|, |X ′|

}
2 ln d.

(20)

The proof of this is as follows,

CX|X′(%X∪X′) = S(%X) + S(%X′)− S(%X∪X′)

≤ S(%X) + S(%X′)−
∣∣S(%X)− S(%X′)

∣∣
= 2 min

{
S(%X), S(%X′)

}
,

where the (3c) Araki-Lieb triangle inequality, is used.
Then using (18) completes the proof: the minimum of

the entropies is bounded from above by the minimum of
the upper bounds of the entropies.

Generalising the above, let us consider a partition ξ =
X1|X2| . . . |X|ξ| ∈ Π(L) of the whole system L. We have
then that the ξ-correlation (7) is bounded by

Cξ(%L) ≤ |L| ln d. (21)

Another bound can also be given, which is stronger, if
one part is larger than the others together,

Cξ(%L) ≤
(∑
X∈ξ

2 ln dX −max
X′∈ξ

{
2 ln dX′

})
=
(
|L| −max

X∈ξ

{
|X|
})

2 ln d.

(22)

The proof of this is as follows,

Cξ(%L) =
∑
X∈ξ

S(%X)− S(%L)

≤
∑
X∈ξ

S(%X)− S(%X′) +
∑
X∈ξ
X 6=X′

S(%X)

= 2
∑
X∈ξ
X 6=X′

S(%X) for all X ′ ∈ ξ,

where the polygon inequality,

S(%X′)−
∑
X∈ξ
X 6=X′

S(%X) ≤ S(%L) for all X ′ ∈ ξ,

is used. (This follows from the combination of the (3c)
triangle inequality in the form of S(%X′) − S(%L\X′) ≤
S(%L), holds for all X ′ ⊆ L, with the (3b) subadditivity,
in the form S(%L\X′) ≤

∑
X∈ξ,X 6=X′ S(%X).) Then using

(18) completes the proof: the sum of the |ξ| − 1 lowest
entropies is bounded from above by the sum of the |ξ|−1
lowest upper-bound of the entropies. Note that (20) is a
special case of this.

Having the (22) bound for the ξ-correlation (7), we can
obtain the bound

Cξ(%L) ≤
(
|L| −max

ξ∈ξ
max
X∈ξ

{
|X|
})

2 ln d (23)

for the ξ-correlation (10): the minimum of ξ-correlations
is bounded from above by the minimum of the upper-
bounds of the ξ-correlations. This leads to the bounds
for the k-partitionability correlation (14a) and the k-
producibility correlation (14b)

Ck-part(%L) ≤
(
k − 1

)
2 ln d, (24a)

Ck-prod(%L) ≤
(
|L| − k

)
2 ln d. (24b)

Based on the bounds (20), (22), (23) and (24), it is
convenient to give all numerical results for these quan-
tities in units of ln d. On the other hand, although we
do not know if the bounds (22), (23) and (24) can be
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attained or not by quantum states, we emphasise that
there exist stronger bounds for the correlations in classi-
cal states than for the correlations in quantum states. In-
deed, applying the monotonicity of the entropy w.r.t. par-
tial trace (S(%X′) ≤ S(%X) if X ′ ⊆ X, holds for classi-
cal states2), it is easy to prove, that for classical states
we have half of the bounds (20), (22), (23) and (24).
For example, consider the cases of two classical and two
quantum dits. For classical states (embedded locally into
quantum states), the maximally correlated one is given

by 1
d

∑d
i=1 |i〉〈i| ⊗ |i〉〈i|, for which C1|2 = ln d, while for

quantum states, the maximally correlated one is given

by 1
d

∑d
i,j=1 |i〉〈j| ⊗ |i〉〈j| (projecting to the state vec-

tor 1√
d
(
∑d
i=1 |i〉 ⊗ |i〉), for which C1|2 = 2 ln d. That is,

the (20) bound is strict for quantum states (i.e., it is at-
tained), and the (strict) bound for classical states is only
the half of that. Similarly, we expect that the maximal
possible values of the ξ-correlation, the ξ-correlation, the
k-partitionability correlation and the k-producibility cor-
relation are strictly smaller for classical states than for
quantum states.

G. Relations among the correlation measures.

We have already seen the first two relations among
the correlation measures, the multipartite monotonicity
of the first and second kinds in (9) and (12). We can
easily have the further two,

Cξ(%L) ≤ Cξ(%L) for all ξ ∈ ξ, (25)

by definition (10), and

Cξ(%L) ≤ Cξ(%L) if ξ � ↓{ξ}, (26)

by the multipartite monotonicity (12).
For disjoint X,X ′ ∈ L subsystems, we have that

the usual bipartite X|X ′-correlation is monotonic in the
sense that

∀i ∈ X, i′ ∈ X ′ : Ci|i′(%{i,i′}) ≤ CX|X′(%X∪X′), (27)

following from (8) and the (4) monotonicity of the rela-
tive entropy (2). (Alternatively, a different proof can be
formulated exploiting the (3a) strong subadditivity of the
von Neumann entropy.) From this, and the multipartite
monotonicity (9), for all i, i′ orbitals and for all ξ ∈ Π(L)
splits,

Ci|i′(%{i,i′}) ≤ Cξ(%L) if i|i′ = ξ|{i,i′}, (28)

that is, when ξ separates i and i′. From this,

Ci|i′(%{i,i′}) ≤ min
ξ∈ξ

Cξ(%L) = Cξ(%L)

if i|i′ = ξ∗|{i,i′}, where ξ∗ = argmin
ξ∈ξ

Cξ(%L).
(29)

In particular,

Ci|i′(%{i,i′}) ≤ min
X⊂L

CX|(L\X)(%L) = C2-part(%L)

if i ∈ X∗, i′ ∈ L \X∗,
where X∗ = argmin

X⊂L
CX|(L\X)(%L).

(30)

Generalising the relations above, let us consider a
(nonempty) subsystem L′ ⊆ L of the whole system L,
and the ξ|L′ restriction of a partition ξ to this subsys-
tem. We have then

Cξ|L′ (%L′) ≤ Cξ(%L), (31)

following from (8) and the monotonicity of the relative
entropy (2) for partial trace4,5. Note that the bound
(28) is a special case of this. Let us consider the ξ|L′
restriction of a nonempty down-set of partitions ξ to this
subsystem. We have then

Cξ|L′ (%L′) ≤ Cξ(%L), (32)

following from (31): the minimum of the ξ|L′ -correlations
is bounded from above by the minimum of the larger ξ-
correlations. Let us consider the k-partitionability and
k-producibility of the subsystem L′. We have then

C(
k − (|L| − |L′|)

)
-part,L′(%L′) ≤ Ck-part(%L), (33a)

Ck-prod,L′(%L′) ≤ Ck-prod(%L), (33b)

because of (17).
On the other hand, one can also bound level II mea-

sures of subsystems L′ ⊆ L by level I measures of the
original system L. We have then that for a ξ ∈ Π(L)
split,

Cξ′(%L′) ≤ Cξ(%L) if ξ|L′ ∈ ξ′, (34)

following from (31) and (25). In particular,

C2-part,L′(%L′) ≤ Cξ(%L)

if ξ|L′ � X ′|(L′ \X ′) for a X ′ ∈ L′, (35)

that is, if ξ dissects L′, that is, if ξ|L′ is not the trivial
split.

H. Relations for the bipartite correlation
clustering.

Let us split the system into subsystems, described
by the partition γ = G1|G2| . . . |G|γ| ∈ Π(L), given
by the clustering based on the “connectivity” with re-
spect to Ci|j . That is, subsystems i and j are con-
tained in the same part G ∈ γ, if and only if there ex-
ists a path i = i1, i2, . . . , ip = j of orbitals for which
Cis|is+1

(%{is,is+1}) ≥ Tb for a threshold Tb for all 1 ≤ s ≤
p− 1. We call this bipartite correlation clustering.
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The first point to see here is that there are nonvanish-
ing correlations Cξ′ and Cξ′ inside the parts G ∈ γ. In-
deed, for all ξ′ ∈ Π(G), for all X ′ ∈ ξ′, there are i′ ∈ X ′
and i ∈ G \ X ′ for which Ci|i′(%{i,i′}) ≥ Tb, because
of the construction of γ. For these, on the other hand,
ξ′|{i,i′} = i|i′, so the condition of (28) holds,

Tb ≤ Ci|i′(%{i,i′}) ≤ Cξ′(%G). (36)

Because this holds for all ξ′, it holds also for ξ′∗ =
argminξ′∈ξ′ Cξ′ , so the condition of (29) holds,

Tb ≤ Ci|i′(%{i,i′}) ≤ Cξ′(%G). (37)

In particular,

Tb ≤ Ci|i′(%{i,i′}) ≤ C2-part,G(%G). (38)

Note that, because of (22) and (23), the bounds (36) and
(37) seem to be rather weak. However, because of (24a),
the bound (38) seems to be strong, depending on Tb.

The second point to see here is that Cγ is not nec-
essarily weak. If there is a subsystem L′ ⊆ L which is
dissected by γ, that is, for which γ|L′ is nontrivial, and
the correlation Cξ′ inside L′ is strong (we can interpret
this as the occurrence of hidden correlations), then Cγ is
also strong,

Cξ′(%L′) ≤ Cγ(%L) if γ|L′ ∈ ξ′, (39)

which is (34). In particular,

C2-part,L′(%L′) ≤ Cγ(%L) (40)

in all cases, because all nontrivial splits are contained in
µ2,L′ .

The third point to see here is that if Cξ is weak for a
split ξ ∈ Π(L), then γ � ξ, or, contrapositively, if γ � ξ
then Cξ is strong. This comes as follows. If γ � ξ then
there is a G ∈ γ which is dissected by ξ, that is, ξ′ := ξ|G
is not trivial. Then for all X ′ ∈ ξ′, there are i′ ∈ X ′ and
i ∈ G \ X ′ for which Ci|i′(%{i,i′}) ≥ Tb, because of the
construction of γ. For these, on the other hand, ξ′|{i,i′} =
i|i′, so the condition of (28) holds, and using also (31),
we have Tb ≤ Ci|i′(%{i,i′}) ≤ Cξ′(%G) ≤ Cξ(%L).

The fourth point to see here is that one can exclude the
hidden correlations among the parts of ξ ∈ Π(L) if Cξ is
weak. We have just seen that if Cξ is weak then γ � ξ.
If Cξ is weak then the 2-partitionability C2-part,L′(%L′) is
weak in every subsystem L′ ⊂ L which is dissected by ξ,
that is, for which ξ|L′ is nontrivial, that is,

C2-part,L′(%L′) ≤ Cξ(%L), (41)

in the same way as (40), and here the right hand side is
weak. However, if the system is large enough, then there
can be several small local contributions to the global Cξ,
making it too large, even if there are no hidden correla-
tions.

β

ξ

ξ′ ξ′′

⊤

⊥

Π(L) :

..
.

...

Supplementary Figure S2. Illustration for the (43) defini-
tion of multipartite correlation clustering. The up-set ↑{β}
is drawn by red line, Cξ′ − Cξ ≤ Tm, because β � ξ′, while
Cξ′′ −Cξ > Tm, because β � ξ′′. (Schematic view of the par-
tition lattice Π(L): the arrows denote the covering relation
(6) in the same way as in Fig. S1, and the dashed grey lines
represent the gradation of the lattice.)

In summary, an intrinsic problem of the bipartite cor-
relation clustering is that it is based on bipartite correla-
tions, which are local (that is, consider only density ma-
trices of two elementary subsystems), and which ranges
in 0 ≤ Ci|j ≤ 2 ln d. Because of this, it is unable to grasp
the multipartite correlations in a satisfactory way, unless
some additivity results for Ci|j can be proven, which does
not seem to be the case.

I. Multipartite correlation clustering

Here we formulate and solve the task of dividing the
whole system into weakly correlated subsystems consist-
ing of strongly correlated elementary subsystems. We
call this multipartite correlation clustering. That is, to
obtain β = B1|B2| . . . |B|β| ∈ Π(L), if exists, for which

(i) the subsystems described by the parts B ∈ β are
weakly correlated with one another,
(ii) the elementary subsystems i ∈ B inside a part B ∈ β
are strongly correlated with one another.

It makes this notion complicated that strong and weak
are ill-defined, and depend on the context. That is, al-
though some rules of thumb might exist, we cannot for-
mulate general thresholds for Ck-part,B , Ck-prod,B and Cβ
independently of the situation. Instead of that, we use
a different point of view, leading to a local strategy. For
this, we have to be able to decide about a given ξ, if it
is a good ansatz, or it is worth considering a ξ′, which is
“a bit” finer than ξ.

The first we need is to calculate the “derivative” of Cξ
with respect to ξ, that is, the difference of Cξ for covering
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β

β′

ξ = β ∨ β′

ξ′

⊤

⊥

Π(L) :

..
.

...

⊤

⊥

Π(L) :

..
.

...
β′′

β′

β

(a) (b)

Supplementary Figure S3. Illustrations for the multipartite correlation clusterings. (a) There are no contradictory multipartite
correlation clusterings. (b) There may be different compatible multipartite correlation clusterings.

ξ values. Let ξ′ ·≺ ξ, then we have

Cξ′(%L)− Cξ(%L) = Cξ′\ξ(%X), (42)

where X is the unique element in ξ \ ξ′, see (6). In-
deed, if ξ′ ·≺ ξ, then they have the same parts, the en-
tropies of which cancel each other, apart that there is
a unique X∗ ∈ ξ, which is dissected into the disjoint
X ′∗1, X

′
∗2 ∈ ξ′ parts, from which Cξ′(%L) − Cξ(%L) =

S(%X′∗1) + S(%X′∗2)− S(%X∗) = CX′∗1|X′∗2,X∗(%X∗). (Note
that the right hand side in (42) is nonnegative, so Cξ
decreases with respect to the covering, which is the spe-
cial case of the multipartite monotonicity (9), valid for
arbitrary coarsening.)

Now we reformulate the multipartite correlation clus-
tering (i)-(ii) as seeking β for which

there exists a threshold Tm > 0, such that

∀ξ, ξ′ ∈ Π(L) such that ξ′ ·≺ ξ, and β � ξ, then

β � ξ′ ⇔ Cξ′(%L)− Cξ(%L) ≤ Tm.

(43)

(For illustration, see Fig. S2.) This means that, on the
one hand, the change of the function Cξ with ξ is small
while ξ is coarser than β (ξ does not leave the up-set
↑{β}), that is, we divide only parts weakly correlated
with one another (42). This is how (i) is grasped. On
the other hand, the function Cξ jumps when ξ gets not
coarser than β (ξ does leave the up-set ↑{β}), that is, if
we divide parts strongly correlated with one another (42).
This is how (ii) is grasped. Note that, for a more robust
definition, one can impose a threshold interval instead
of a simple threshold value. Note also that the minimal
change in Cξ is related to the 2-partitionability of the
parts in ξ,

min
ξ′ ·≺ξ

(
Cξ′(%L)− Cξ(%L)

)
= min

X∈ξ
C2-part,X(%X), (44)

because of (42).

There might not exist meaningful multipartite corre-
lation clustering for a given quantum state %L, that is,
there might exist no β satisfying (43). However, the no-
tion of the multipartite correlation clustering (accord-
ingly, the definition (43)) is strong enough to exclude
the existence of more than one contradictory βs (that
is, which are not related by coarsening). Indeed, let us
take, contrapositively, that we have β and β′, with pos-
sibly different thresholds Tm ≤ T ′m, for which β � β′

and β � β′. (For illustration, see Fig. S3(a).) Now let
us have ξ = β ∨ β′, the least upper bound of β and
β′, then for the next step ξ′ ·≺ ξ we have that either
β ⊀ ξ′ or β′ ⊀ ξ′ (it leaves either ↑{β} or ↑{β′}). Let us
choose a step β′ ⊀ ξ′ and β ≺ ξ′ (leaving ↑{β′} but stay-
ing in ↑{β}), then from the definition (43) we have that
T ′m < Cξ′(%L)−Cξ(%L) ≤ Tm, contradicting to Tm ≤ T ′m.
On the other hand, more than one compatible β (with
different thresholds Tm) might still exist (that is, which
are related by coarsening). Then they form a chain,
β � β′ � β′′ � . . . (↑{β} ⊂ ↑{β′} ⊂ ↑{β′′} ⊂ . . . ), and
Tm < T ′m < T ′′m < . . . , this means that there are different
meaningful levels of the multipartite correlation cluster-
ing, that is, different strength-scales of correlations. (For
illustration, see Fig. S3(b).)

How to find β satisfying (43)? The threshold Tm in
(43) seems also to be ill-defined, unless we calculate and
compare Cξ for all ξ ∈ Π(L), which is infeasible even
for not too large systems. (|Π(L)| grows rapidly38 with
|L|.) Fortunately, we do not have to do so. It is enough
to start with the trivial element ξ = > = {L} (with
C> = 0), then carrying out successive refinement (that
is, climbing down Π(L) such that in each step we move
from ξ to ξ′ which is covered by ξ), while keeping track
of the change of Cξ. If in one step Cξ′ − Cξ is much
larger than before, then we have to find another ξ′ ·≺ ξ,
for which Cξ′ − Cξ is small. If there is no such ξ′, then
we have reached β, that is, β = ξ. This is because in
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ξ

υ

υ′

ξ′

⊤

⊥

Π(L) :

..
.

...

X∗

X
′

∗1 X
′

∗2

Y∗

Y
′

∗1 Y
′

∗2

(a) (b)

Supplementary Figure S4. Illustration for the proof of (45) for multipartite correlation clustering. (a) The up-set ↑{ξ} and
down-set ↓{ξ} are drawn by solid and dashed blue lines. υ′ leaves ↑{ξ}; ξ′, constructed in the text, is covered by ξ, its up-set,
drawn by solid green line, may or may not contain υ′. (b) The construction of ξ′, see in the text: υ and υ′ are drawn by solid
and dashed black lines. ξ and ξ′ are drawn by solid blue and dashed green lines.

general,

∀υ, υ′ ∈ Π(L) such that υ′ ·≺ υ, and

∀ξ ∈ Π(L) such that ξ � υ but ξ � υ′, then

min
ξ′ ·≺ξ

Cξ′(%L)− Cξ(%L) ≤ Cυ′(%L)− Cυ(%L).
(45)

(For illustration, see Fig. S4(a).) The proof is as follows.
For the right hand side, since υ′ ·≺ υ, we have the unique
Y∗ ∈ υ and Y ′∗1, Y

′
∗2 ∈ υ′, such that υ′ \ υ = {Y ′∗1, Y ′∗2}

and υ \ υ′ = {Y∗}, see (6), by which Cυ′(%L)−Cυ(%L) =
C{Y ′∗1,Y ′∗2},Y∗(%Y∗), see (42). For the left hand side, since
ξ � υ, we have that for all X ∈ ξ there exists a Y ∈ υ
such that X ⊆ Y , see (5). The partition υ′ dissects some
(at least one) parts of ξ (since ξ � υ′). LetX∗ ∈ ξ be such
a part. Note that X∗ ⊆ Y∗, since ξ � υ, and Y∗ is the one
dissected by υ′. Now choose a ξ′ such that X∗ ∈ ξ is also
dissected by ξ′ into parts “in the same way as υ′”, that is,
ξ′ :=

(
ξ \ {X∗}

)
∪ {X ′∗1, X ′∗2} where X ′∗1 := X∗ ∩ Y ′∗1 ⊆

Y ′∗1 and X ′∗2 := X∗ ∩ Y ′∗2 ⊆ Y ′∗2. (For illustration, see
Fig. S4(b).) It is clear that ξ′ ·≺ ξ, see (6). Now we have
that Cξ′(%L) − Cξ(%L) = C{X′∗1,X′∗2},X∗(%X∗), see (42).
Since {X ′∗1, X ′∗2} = {Y ′∗1, Y ′∗2}|Y∗ , the proof is completed
by (31). The meaning of (45) is exactly what we need:
if at a ξ the change of the correlation Cξ is large for all
the possible steps then the change of the correlation is
also large if one leaves the up-set ↑{ξ}. So if, during
the successive refinement, we follow a path in which the
change of the correlation Cξ is small, and we reach a ξ of
small enough Cξ, after which in every possible step this
change becomes large, then we have reached β.

So in this way we have managed to give meaning to
Cξ′ − Cξ being small or large, by comparing the values
of Cξ through a path from > to ⊥. But there is a ques-
tion remained: how to do the successive refinement? If,
for example, we choose a wrong step in the beginning,

with Cξ′ −Cξ=> = Cξ′ being large (this is the case when
β � ξ′, we leave the up-set ↑{β}), we do not notice this,
and we miss the whole structure. (Choosing a wrong
step later can be recognised, since the difference Cξ′−Cξ
becomes large, compared to the differences in the previ-
ous steps.) We can avoid this mistake if in each step we
choose the step in which Cξ changes the smallest. How-
ever, always finding the step with minimal change in Cξ is

still infeasible (|{ξ′ ∈ Π(L)|ξ′ ·≺ ξ}| = ∑X∈ξ(2
|X|−1 − 1)

is still large in the beginning of the procedure). For-
tunately, the bipartite correlation clustering γ, given in
the previous section, often gives us a good hint. We can
immediately have that the parts G ∈ γ should not be
dissected: the 2-partitionability C2-part,G in G is strong
(38), which determines the change of Cξ, that is,

Tb ≤ Cξ′ − Cξ, if γ ≺ ξ and γ ⊀ ξ′, (46)

see (38) and (42). This reduces the possibilities for the
steps in the successive refining, since it must be contained
in ↑{γ} until it reaches γ. However, in the presence of
hidden correlations, that is, strong multipartite correla-
tions among the parts of γ, we have that the change of
Cξ is high even if no part of γ is dissected (44).

J. Example for hidden correlations

Here we construct an example family of states show-
ing hidden correlations. The smallest quantum system
in which hidden correlations can occur is the system of
three qubits. A general three-qubit state %{1,2,3} can be
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expressed in the basis of the Pauli matrices

σ0 =

[
1 0

0 1

]
, σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
,

(47)

with the coefficients %a,b,c{1,2,3} ∈ R as

%{1,2,3} =
1

8

3∑
a,b,c=0

%a,b,c{1,2,3}σa ⊗ σb ⊗ σc. (48)

The normalisation tr %{1,2,3} = 1 leads to %0,0,0
{1,2,3} = 1,

on the other hand, for the sake of simplicity, let us use

only the σ0 and σ3 components, that is, %a,b,c{1,2,3} = 0 if

any of a, b, c is 1 or 2. Let then %3,0,0
{1,2,3} = x, %0,3,0

{1,2,3} = y,

%0,0,3
{1,2,3} = z, %0,3,3

{1,2,3} = yz, %3,0,3
{1,2,3} = xz, %3,3,0

{1,2,3} = xy,

and %3,3,3
{1,2,3} = v. For certain ranges of the parame-

ters (x, y, z, v) ∈ R4, the resulting matrix is positive,
that is, represents a state. Then, using the notation
%{i} = tr{j,k} %{i,j,k}, %{i,j} = tr{k} %{i,j,k} for all distinct
i, j, k ∈ {1, 2, 3}, one can easily check that

%{i,j} = %{i} ⊗ %{j}, (49a)

while

%{1,2,3} = %{i} ⊗ %{j,k} ⇐⇒ v = xyz. (49b)

So, if v 6= xyz, then %{1,2,3} is correlated with respect
to any nontrivial split, although its bipartite subsystems
are uncorrelated. Using the correlation measures (7) and
(14), this leads to

Ci|j(%{i,j}) = 0, (50a)

Ci|j,k(%{1,2,3}) > 0, (50b)

C2-part(%{1,2,3}) = C2-prod(%{1,2,3}) > 0, (50c)

C1|2|3(%{1,2,3}) =

= C3-part(%{1,2,3}) = C1-prod(%{1,2,3}) > 0. (50d)

Important to note that %123 is a diagonal matrix, the
diagonal elements of which can be considered as the en-
tries of a classical three-bit state. That is, the phe-
nomenon of hidden multipartite correlations is not a
quantum feature, it exists also in states of classical sys-
tems.
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II. RESULTS EMPLOYING THE MINIMAL BASIS

Here we present the results of the same calculations as in the main text, but now using STO-3G basis set.

C6H6 (benzene) C4H5N (pyrrole) C4H5B (borole) C4H4 (cyclobutadiene)

1s

2pz

(2s, 2px, 2py)

hybrids Xin Xin

N

Xin

B

Xin

Cβ = 2.33 Cβ = 2.32 Cβ = 3.75 Cβ = 3.17Cα = 29.52 Cα = 24.17 Cα = 23.83 Cα = 19.48
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Supplementary Figure S5. Partitioning and multipartite correlations for the benzene, pyrrole, borole and cyclobutadiene
molecules. The same types of data are shown as in Fig. 1 in the main text.
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Supplementary Figure S6. Partitioning and multipartite correlations for the furan and thiophene molecules. The same types
of data are shown as in Fig. 2 in the main text.
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Supplementary Figure S7. Partitioning and multipartite correlations for the C2H2x molecules. The same types of data are
shown as in Fig. 3 in the main text.
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